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Effects of landscape and distance in automatic audio based bird
species identification

Panu Somervuo,1,a) Patrik Lauha,1 and Tapio Lokki2
1Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
2Acoustics Lab, Department of Information and Communications Engineering, Aalto University, Espoo, Finland

ABSTRACT:
The present work focuses on how the landscape and distance between a bird and an audio recording unit affect

automatic species identification. Moreover, it is shown that automatic species identification can be improved by

taking into account the effects of landscape and distance. The proposed method uses measurements of impulse

responses between the sound source and the recorder. These impulse responses, characterizing the effect of a

landscape, can be measured in the real environment, after which they can be convolved with any number of recorded

bird sounds to modify an existing set of bird sound recordings. The method is demonstrated using autonomous

recording units on an open field and in two different types of forests, varying the distance between the sound source

and the recorder. Species identification accuracy improves significantly when the landscape and distance effect is

taken into account when building the classification model. The method is demonstrated using bird sounds, but the

approach is applicable to other animal and non-animal vocalizations as well.
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I. INTRODUCTION

Automatic animal sound identification is an active

research topic, and lately it has become more important due

to the growing number of passive acoustic monitoring

(PAM) applications (Furnas and Callas, 2015; Gibb et al.,
2019; Pi~na-Covarrubias et al., 2019; Priyadarshani et al.,
2018; Shonfield and Bayne, 2017; Sugai et al., 2019; Sugai

et al., 2020).

Sound propagation and attenuation have been studied

extensively in physics (Attenborough, 2002; Bass et al.,
1984; Bullen and Fricke, 1982; Harris, 1966; Price et al.,
1988). There are also studies on how they are related to bird

song and its observations (Snell-Rooda, 2012; Yip et al.,
2017a; Yip et al., 2017b). In open space under ideal condi-

tions, sound propagates equally to all directions, and the

energy is distributed to a surface of a sphere. The surface

area of a sphere grows quadratically as a function of dis-

tance, and the sound energy attenuates 6 dB per doubling of

distance. However, in addition to the distance effect, the

properties of the medium affect the sound propagation.

These include factors such as air temperature, pressure, and

humidity. Moreover, real environments are not just open

spaces, but there are various types of objects like trees,

rocks, soft ground, hard ground, etc., that affect how the

sound waves are absorbed and reflected. For example, a sim-

ple environmental effect, such as an echo, can make a dras-

tic difference to the characteristics of a sound. The goal in

this work is not to construct any physical model of how the

sound attenuates between the source and the recording unit,

but rather to measure empirically the effects of various envi-

ronments and distances and then find out how they affect the

accuracy of automatic bird species identification. Based on

earlier studies, it is already known that distance affects rec-

ognition accuracy (Haupert et al., 2023; Knight and Bayne,

2019; Leseberg et al., 2022; Shaw et al., 2022). Dabelsteen

(1993) has studied how the song of Turdus merula (common

blackbird) degraded by quantifying attenuation, signal-to-

noise ratio, and blur ratio. There is also work that tries to

estimate the distance between a bird and a recording unit

based on the sound data (Darras et al., 2018).

PAM relies on the use of autonomous recording units

(ARUs). They can be placed at any site where humans can

go, but in contrast to human listeners, they are able to per-

form recording continuously as long as their batteries last.

Data can be easily collected in huge volumes, and this cre-

ates the challenge of how to analyze the content of the

recordings. Manual annotation and labeling are slow, and

therefore, there is a great need to automate the process.

There are many alternatives in machine learning for building

a classifier, but for audio based bird species identification,

the most widely used methods at the moment are based on

convolutional neural networks (CNNs) (Go€eau et al., 2016;

Kahl et al., 2021; Lasseck, 2018). Training data for these

classifiers consist of previously collected and labeled data.

Bird vocalizations can be extracted from public databases,

such as xeno-canto (Xeno-canto Foundation, 2005) or

Macaulay Library (Macaulay Library, 2021). One problema)Electronic mail: panu.somervuo@helsinki.fi
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with this approach is that in many cases, the environment

where the training data have been recorded does not match

the environment where the model is going to be used to clas-

sify new audio data. For example, data in xeno-canto may

have been recorded with a high-quality directional micro-

phone with a short distance between the recorder and the

bird. In PAM and ARU, however, data are typically

recorded with omnidirectional microphones, and the dis-

tance between the bird and the recorder varies.

Like any neural network, CNNs require training data to

optimize their parameters before they can be used for classi-

fying new data. In general, neural networks learn to associ-

ate input patterns to given labels during the training process.

The key challenge in the training is how to make the net-

work generalize well to unseen input patterns. Bird song has

variation on many levels due to the geographical location,

environment, and individual. Training data consist of

recorded vocalizations of birds, and in practice, the amount

of available data is always limited. Therefore, no practical

set of recordings can contain all possible variations of bird

sounds. Consequently, if the limited variation of the training

data is not taken into account, the network can easily

become overfitted to the fixed number of training data pat-

terns. Overfitting means that the network learns to map the

given training samples perfectly against the given output

labels but does not generalize its performance to unseen

data. A typical approach to solving this problem is to add

perturbations to the training data. This is called data aug-

mentation. The goal is to avoid overfitting and improve gen-

eralization. One of the challenges of neural network training

is to find the right type of variations to add in the training

data.

In this work, it is shown how the effect of a specific

landscape and distance can be added to the training data of

the neural network. The benefit of the proposed approach is

that even when the network is trained using data recorded

elsewhere, the effect of any specific landscape can be added

computationally. This requires measuring impulse responses

in the new environment, which is much faster to do than

playing back all the bird sounds in the new environment and

recording them. The structure of this paper is to first explain

how the impulse response is measured in a real environ-

ment, how the landscape effect can be introduced to a

recorded bird sound, and how the neural network is trained

with the augmented data. Models that have been trained

with the landscape and distance effect data are compared

against the baseline model using both synthetic test data

(bird sounds convolved with the impulse response of the

landscape) and playback data from the real environment

(bird sounds played from the loudspeaker).

II. MATERIALS AND METHODS

The methods include measuring the landscape specific

impulse responses and applying them to a set of existing

bird recordings. Impulse responses are estimated based on

recorded sweep signals, which are sinusoidal signals rising

exponentially in time. Figure 1 shows the pipeline for train-

ing a landscape specific neural network for identifying bird

species based on the proposed method.

A. Impulse response recording sites

Audio recordings were collected on two days with dif-

ferent climatic conditions. The first recording included three

locations at Nuuksio, Southern Finland, on September 22,

2022. One of the locations was an open field, and the two

other locations were young mixed forest and old coniferous

forest. The forests were relatively flat, although the old

coniferous forest had shallow (about 1 m deep) pits on the

measurement line. The young mixed forest had a small hill

on the right at 50 m distance. Both forests were in their natu-

ral states, and they included trees with varying diameters

and heights. The heights of the taller trees were between 20

and 30 m.

During the measurements, background noise level LAeq

was 29 dB, temperature 8 �C, humidity 79%, wind 1 m/s,

and air pressure 1023 hPa. Climatic measures were obtained

from the Finnish Meteorological Institute. Distance between

FIG. 1. Flow chart of the proposed

method to apply a landscape effect to

an existing bird sound and train a neu-

ral network that is better adjusted to

the sound characteristics of a given

landscape.
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the sound source and the recording unit was measured by a

knotted cord. Recordings of sweeps were performed at dis-

tances from 5 to 90 m at every 5 m, totaling 18 recordings

per site.

The second set of measurements took place in the same

young mixed forest at Nuuksio, Southern Finland, on March

7, 2023. The recordings included measuring the playbacks

of bird songs in addition to the sweeps. Distance between

the sound source and the recording unit varied from 20 to

90 m at 10 m intervals. In the beginning of the recordings,

temperature was �8 �C, humidity 86%, and wind 1 m/s, and

in the end, temperature was �5 �C, humidity 67%, and wind

3 m/s. The ground was covered with snow (depth 42 cm),

and there was snow on the branches of the trees.

B. Sound source

An LS01 (ACOEM Group, Limonest, France) loud-

speaker (on the left in Fig. 2) was located on a stand 1.2 m

above the ground. A 19-s long exponentially rising sinusoi-

dal sweep was played covering the frequencies from 50 Hz

to 20 kHz. Sound pressure was LAeq¼ 85 dB measured at

3 m distance. Due to the clipping of sound in a recording

unit at the two closest source positions, which was found

only after the first landscape was measured (young forest),

in the two other landscapes (open field and old forest), the

gain was reduced by 12 dB when the distance between the

loudspeaker and the recording unit was 5 m and by 6 dB

when the distances were 10 and 15 m. The level differences

were compensated back after the computation of impulse

responses.

C. ARUs

This study used AudioMoths (Open Acoustic Devices)

(Hill et al., 2018), which are small devices with a micro-

electro-mechanical systems (MEMS) microphone. MEMS

microphones are typically inexpensive, but they have a large

frequency range, and in addition to birds, frogs, and

mammals, they can be used to record bat sounds. The big-

gest disadvantage of a MEMS microphone is the signal-to-

noise ratio, which can be considerably lower compared to

more expensive microphones. The sampling frequency of

AudioMoth can be set between 16 and 384 kHz. Each

recording creates a file in WAV format where a sample

value is represented by 16 bits. Technical information about

AudioMoths can be found on the manufacturer’s web page.

Also, a GitHub repository (Lapp, 2021) contains informa-

tion regarding frequency response, polar pattern, effect of

different types of cases, and measurements in room, grass-

land, and forest environments.

Sound recordings in the present study were made using

six AudioMoth 1.1.0 devices. Their firmware was updated

to AudioMoth-Firmware-Basic 1.8.1, which was the most

recent version available at the time of the experiment.

Sampling rate was 48 kHz, and medium gain was used. The

devices were tied to a tree trunk at a level of 1.2 m above

ground. Four of the devices were used without a case, and

two of them were inside an AudioMoth IPX7 case (see Fig.

2). The recording angles of the devices without a case were

0�, 60�, 120�, and 180� measured from the center of the tree

toward the sound source. Two devices with a case had

angles 0� (in front of the tree) and 180� (at the back of the

tree).

D. Estimation of impulse responses

Based on the input signal and the recorded output sig-

nal, the way that the input signal changes due to the environ-

ment can be calculated. When the environment is modeled

as a time-invariant linear system, the effect is characterized

by an impulse response. The impulse responses were mea-

sured with the swept sinusoid technique (Farina, 2000). In

brief, the method works as follows. The exponentially rising

sinusoid in time is recorded, and the impulse responses are

obtained by convolving the recordings with the time domain

inverse of the excitation. Since the frequency response of

the exponential sweep drops 3 dB per octave, the amplitude

of the time inverse must be modified to obtain the flat fre-

quency response. This method is widely used in room acous-

tical measurements and results in a high signal-to-noise

ratio. Moreover, it allows the removal of possible harmonic

distortion components of the sound source.

For 3 landscapes, 18 distances, and 6 microphones, the

measurements result in a total of 324 impulse responses.

Due to the clipping of sound in one landscape for the two

shortest distances, 312 impulse responses were used from

the first set of measurements. The additional measurements

with snow conditions from one landscape included seven

distances and six microphones. Due to the failure of one

microphone, 35 impulse responses were used from that set.

Impulse responses were calculated and applied using

MATLAB’s floating point resolution without discretizing and

saving them to WAV files in between. The lengths of the

impulse responses were limited to be 500 ms since the tails

contained mostly noise based on manual inspection.
FIG. 2. (Color online) The applied battery driven omnidirectional sound

source and AudioMoth microphones with and without the case.
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E. Adding the effect of landscape and distance to a
bird sound

The effect of landscape and distance on the sound is

obtained by computing the convolution between the bird

sound and the landscape-distance specific impulse response.

The calculation was performed in the frequency domain,

and inverse Fourier transform was used to get back a time

domain signal. The number of time points in the FFT was a

power of 2, and FFT length was set to be longer than the

length of the input signal by using zero padding in the origi-

nal input signal. The result of the inverse FFT was truncated

to have the same length as the original input signal.

F. Bird audio data

To test the species identification, 2020 audio recordings

were picked from xeno-canto (Xeno-canto Foundation,

2005). They covered 101 different species (20 recordings

per species). As indicated earlier, 312þ 35 landscape-

distance effects were applied to each record via convolution.

The xeno-canto recordings used and their detailed classifica-

tion results are listed in supplementary material.1 Playback

data included 202 audio recordings that were randomly

selected from the set of 2020 xeno-canto samples, so that

each species was represented by two recordings. Playback

data were played at multiple distances between the loud-

speaker and the recording unit.

Training data were the same that had been used in

Lauha et al. (2022) and contained 1000 vocalizations for

each species. Ideally, the initial training data should be free

of any environmental effects, as the purpose of the proposed

method is to add the effect of a desired landscape. Since the

training data in this study were from Macaulay Library

(2021) field recordings, they inevitably contained some

effect of their original recording environment.

G. CNN

For testing the accuracy of bird identification, a CNN

was used (Lauha et al., 2022). Its input consisted of a 3-s

time window of audio signal that was converted into a 129

� 128 pixel spectrogram, and its output gave a probability

for 101 Finnish bird species. The CNN contained four con-

volutional layers and two dense layers, and it was trained

with PYTHON libraries Keras and TensorFlow for ten epochs

using an RMSprop optimizer, a learning rate of 0.0001, and

a binary cross-entropy loss function. Augmentations such as

horizontal and vertical stretching, shifting, and masking

were applied during training.

There were six different versions of the original net-

work. All models were trained from scratch with the same

hyperparameters. The training data of the first network con-

sisted of the original bird recordings. Five other networks

were trained using the data with different synthetic land-

scape effects. There were three networks corresponding to

summer conditions (impulse responses from three locations

from September) and two networks corresponding to winter

conditions (impulse responses from one location from

March). The difference between the two networks trained

with March impulse responses was how the background

noise level was added in the training data. In the first model,

the noise level was random from a prior distribution (winter

CNN1), and in the second model, the noise level was deter-

mined based on which distance effect was applied to the

training data (winter CNN2). For simplicity, it was assumed

that the source signal energy decreases 6 dB per doubling of

distance, and the background noise level was set by visual

investigation of the spectrograms so that the noise had negli-

gible effect for the training data mimicking the effect of 20

m. These values were not estimated from playback data in

order not to overfit the training data to the test data.

Background noise was sampled from the mixture of white

and pink noise. Within each landscape specific network,

training data with different distance effects were merged.

When including the landscape and distance effects in

the training data, the impulse responses of only one micro-

phone were used (the microphone that was without

AudioMoth case in front of the tree toward the sound

source). From the first set of impulse response measure-

ments, to represent different distances evenly in the training

data, distances were put into three categories. In the first cat-

egory, there were impulse responses from 5, 15, and 25 m;

in the second category, there were impulse distances corre-

sponding to 35, 45, and 55 m; and in the third category, there

were impulse responses corresponding to 65, 75, and 85 m.

During training, one impulse response was randomly

selected from each category so that there were three differ-

ent modifications for each original training sample. From

the second set of impulse response measurements, the train-

ing data contained the effect of 30, 50, and 70 m. When cre-

ating test data, all impulse responses were applied covering

all measured distances.

H. Statistical analysis

Species identifications were performed for the original

data, the data to which landscape-distance effects had been

added, and playback data. The classification was deemed

correct if the output with the highest probability corre-

sponded to the species label of the input sample. Accuracy

was calculated by dividing the number of correct classifica-

tions by the total number of recordings. The 95% confidence

interval (CI) of the classification accuracy was calculated

using normal approximation. Accuracy drop as a function of

distance was investigated by fitting a linear model.

Mean frequency for each individual bird sound was cal-

culated from the spectrogram. Mean frequency of each time

frame was computed as an energy-weighted sum of fre-

quency bins, and the average over the entire bird sound

duration was calculated as a frame based energy-weighted

mean frequency. Accuracy drop as a function of mean fre-

quency was investigated by fitting a linear model.

Sound attenuation was calculated by fitting a linear

function between 10 log10ðPÞ and log2ðrÞ, where P is the

energy of the signal divided by its duration, and r is the
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distance between the source and the recorder. The resulting

slope gives the relative increase in power in dB when dou-

bling the distance. A negative slope indicates attenuation.

III. RESULTS

The present study provides three main results. The first

shows that both landscape and distance have an effect on the

accuracy of automated bird identification. Second, the accu-

racy can be improved by accounting for these effects when

training the classification model. Third, landscape and dis-

tance have different effects for different species.

A. Distance effects

Investigation of impulse responses shows how land-

scape and distance affect the original signal. The recorded

impulse responses contain all sounds captured by recording

units, i.e., reflections from trees, ground attenuation, etc.

Frequency responses were calculated for each recording unit

based on the Fourier transform of the impulse response.

Ideally, if there were no effects, the magnitude spectra

would be flat, meaning that no frequencies are attenuated or

amplified differently. Naturally, the spectra contain the

spectrum of the sound source and the recording unit, in addi-

tion to the effect of the landscape. Figure 3(A) shows fre-

quency responses of all six recording units, two with and

four without a case during recording. The biggest difference

between the two units is visible at low frequencies, where it

can be seen that the AudioMoth case markedly attenuates

frequencies below 2 kHz. At high frequencies, on the other

hand, there seems to be a small gain for the units with the

case. Figures 3(B) and 3(C) illustrate the effect of the young

forest landscape at different distances. For these plots, the

recorders in front of the tree were used. The distance effect

where high frequencies are attenuated more compared to

low frequencies (starting from 1 kHz) is most clearly visible

in Fig. 3(B), which shows the magnitude spectrum of the

impulse response corresponding to a 90-m distance.

Sound attenuation was close to 6 dB per doubling of

distance when the energy was calculated from sweep out-

puts. The slope of the fitted curve was �5.98, and R2 was

0.93. The slope was �6.32, and R2 was 0.96 when fitting the

curve to playback data.

The effect of distance in a forest landscape is shown in

the spectrogram of a typical song pattern of Fringilla coe-
lebs (common chaffinch) (Fig. 4). The original sound has

strong harmonic components due to the close range record-

ing. The details of the spectrogram get blurred as the dis-

tance effect gets stronger. It is also visible how high

frequencies attenuate faster than low frequencies.

B. Classification accuracy

Figure 5 shows the effects of three landscapes on the

classification accuracy of data with synthetic landscape

effects. Open field had the smallest effect, as expected, and

young and old forests had a stronger distance effect. In old

forest, the accuracy dropped drastically after 15 m. This is

partly explained by the shape of the landscape: There were

small dips and hillocks along the recording line. After train-

ing the model to take into account the landscape-distance

effects, the accuracies became highly similar between all

landscapes, and the distance effect almost disappeared. For

the field, young forest, and old forest data with the baseline

model, the negative slopes of the accuracy drop curves were

1.6, 3.0, and 3.5, respectively, units being percentage per

10 m. When landscape effect was included in the model, the

corresponding accuracy drops were 0.5, 0.3, and 0.4.

Table I shows the species identification accuracies for

all test data and model combinations with synthetic effects.

The best accuracy was obtained using the model that had

been trained with the data from the same domain as the test

data. Using the original model, all data with landscape

effects were identified considerably worse compared to the

original data. After adding the landscape effect to the train-

ing data, the accuracies from landscape specific models

were very close to the original accuracy of 90%. Both forest

data were identified almost equally well with the model spe-

cific to their own domain and the model from another forest

type. Original data were identified equally well with the

baseline model and the field effect model.

The identification accuracies of playback data are

shown in Fig. 6. All models that had been trained with

FIG. 3. (Color online) Frequency responses of AudioMoth devices around the tree (A). The effect of young forest at three distances without (B) and with a

case (C). Devices were located in front of the tree (angle 0� toward the sound source).
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synthetic landscape effects gave higher accuracies compared

to the baseline model. The best performing model was based

on the impulse responses that had been measured with iden-

tical conditions that occurred when the playback data were

recorded (winter CNN). The results also show that it is ben-

eficial to mimic the degradation of signal-to-noise ratio as a

function of distance (winter CNN2 vs winter CNN1).

C. Species diversity

The results shown previously were averages over all 101

species. When looking at the results coming from the baseline

model, there were noticeable differences between different

species. For some birds, such as Locustella naevia (common

grasshopper warbler) and Dryocopus martius (black

woodpecker), the distance effect was hardly noticeable in the

identification accuracy in all landscapes, whereas for Sylvia
atricapilla (blackcap) and Clangula hyemalis (long-tailed

duck), the accuracy dropped in all landscapes as a function of

distance. For Cygnus cygnus (whooper swan) and Carduelis
carduelis (goldfinch), the accuracy dropped in both forest land-

scapes but not in the field landscape. When using landscape

specific models, all accuracy drops became smaller. There was

no significant correlation between the accuracy drop as a func-

tion of distance and mean frequency of the sound.

IV. DISCUSSION

When studying the effect of distance and sound degra-

dation in relation to bird sounds, most studies in the

FIG. 5. Neural network based species identification accuracies for bird sounds with synthetic landscape and distance effects. Results for landscape specific

data are shown separately in (A)–(C). The landscape specific neural network in each panel has seen the effect of only one microphone at distances 5, 15, 25,

35, 45, 55, 65, 75, and 85 m via training data. Boxplots show the variation between six recording units. For each of them, the accuracies have been averaged

over all 101 bird species. Landscape effect CNN refers to the model that has been trained with the synthetic landscape and distance effects, and original

CNN refers to the baseline model.

FIG. 4. Examples of landscape and

distance effects. Original sound of F.
coelebs, xeno-canto record XC383547

(A), and the resulting sound with the

effect of young forest with distance of

15 m (B), 50 m (C), and 90 m (D).
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literature have focused only on a single species. In a study

by Leseberg et al. (2022), the similarity score between the

calls of Pezoporus occidentalis (night parrot) was calculated

based on template matching with a binary template. The

score was defined as a difference between the mean ampli-

tude detected in the template’s “on” and “off” cells. The

score decreased exponentially as a function of distance. In a

study by Knight and Bayne (2019), the calls of Chordeiles
minor (common nighthawk) were recorded at near, mid

range, far, and mixed distances. Distance was a significant

factor for the variation of correct classification at near and

mid range recorders, but it explained only a small portion of

variation at mid range and far distances. In that study, the

classification was based on HMM. In the present study,

CNN was used as a classifier. Visual investigation of accu-

racy drop versus distance did not suggest any strong expo-

nential decrease. There was a significant drop in accuracy

after 15 m in the old forest, but the most likely explanation

for this was the shape of the landscape: There were hillocks

that absorbed the sound. For other landscapes, the visual

investigation suggested a linear trend in the accuracy drop.

The most likely reason for this is that the present study

included distances only up to 90 m. For longer distances, an

exponentially decreasing function would be a more useful

and appropriate choice.

In a study by Haupert et al. (2023), white noise was

played and recorded at different locations along a 100-m

transect. It was shown that the detection distance can be pre-

dicted knowing the contribution of each attenuation factor,

the coefficient of attenuation of the habitat, the ambient

sound pressure level, and the amplitude and frequency band-

width characteristics of the transmitted sound. In our study,

we have used impulse responses that contain the information

on how different frequency components are attenuated and

what kind of reverberation effect the landscape introduces.

The only remaining parameter to be set in order to mimic

the real sound is the ambient noise and its level. The pres-

ence of ambient noise has a larger proportional effect when

the distance between the microphone and the target sound

source increases. When mimicking the sound coming from a

more distant source by applying the convolution with the

corresponding impulse response, the decreased signal-to-

noise ratio can be taken into account when training the neu-

ral network. This improves the classification accuracy as

indicated in the results of playback data [see Fig. 6(B)]. One

could further argue that the training data should be specific

to the type of recording device because there are noticeable

differences between different microphone types (Darras

et al., 2020).

There were interesting differences between the results

of different bird species. It is generally known that high fre-

quencies attenuate faster along a distance than low frequen-

cies. According to Snell-Rooda (2012), signals of lower

frequency, narrower bandwidth, and longer duration are

more detectable in environments with high sound absorp-

tion. That study found evidence that warbler species with

higher mean absorption were more likely to have narrow

bandwidth songs. Therefore, the initial speculation to

explain the results of the present study was that the identifi-

cation of bird species whose vocalizations are at low fre-

quencies would be less affected than the identifications of

FIG. 6. Species identification accuracies for synthetic effect data and playback sounds covering 101 bird species recorded in winter conditions. The results

are shown for the baseline model and models trained with synthetic landscape effects specific to the recording site (young forest). Summer CNN is the model

for which the impulse responses were measured without snow, and winter CNN is the model for which the impulse responses were measured in winter con-

ditions with snow. The latter model has two versions differing in how the background noise level was set. Boxplots show the variation between five record-

ing units.

TABLE I. Species identification accuracies (percent) with 95% CIs for

original and landscape effect data using original and landscape specific

models. The highest accuracy in each case is in bold.

Data

Original

Model

Field

Model

Young forest

Model

Old forest

Model

Original 90.4 6 1.3 90.2 6 1.3 81.5 6 1.7 84.4 6 1.6

Field 77.2 6 1.8 87.3 6 1.5 81.0 6 1.7 81.3 6 1.7

Young forest 52.0 6 2.2 66.0 6 2.1 87.9 6 1.4 86.0 6 1.5

Old forest 48.1 6 2.2 63.3 6 2.1 84.0 6 1.6 86.1 6 1.5
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other bird species. Another initial thought was that the

degree to which the signal is spread into different frequen-

cies might explain how much the species identification suf-

fers from the distance effect. If the bird sound has a narrow

frequency range, although its intensity will be reduced if the

sound is at a high frequency, the pattern of the sound should

remain the same, and therefore, the distance would not

degrade the identification. In contrast, if the song pattern

covers a large frequency range, some part of it will be damp-

ened more than other parts, and that type of perturbation

might be more challenging for a computer to recognize

when it has been trained to recognize only clean sounds

recorded at short distances. Despite some effort, the authors

of the present study were not able to find any simple reasons

why some species were more affected by the distance effect

than other species. A complicating fact is that although it

can be seen from the magnitude spectrum of the impulse

response which frequencies will be attenuated, it is not nec-

essarily known which parts of the spectrum are key factors

for species identification from the neural network’s point of

view.

In the present study, multiple distance effects were

pooled in the training data of a single model. Alternatively,

one could train a distance specific model for each landscape.

It is tempting to speculate that if the distance to the bird

were known at the moment of recording its sound, that

information could improve the classification. Birds seem to

be able to assess the distance based on the degradation of

the sound (McGregor and Krebs, 1984). Cues for distance

perception include reverberation, overall amplitude, and rel-

ative intensities of frequencies (Naguib and Wiley, 2001).

These have been found in studies of both humans and birds.

The familiarity of a sound and the knowledge of the proper-

ties of the transmission path also play a role. In a study by

Darras et al. (2018), human listeners estimated distances

based on the recordings. To automate the distance estima-

tion, a straightforward engineering solution would be to use

multiple microphones and estimate the source location

based on the differences between the times of arrival of the

signal. One can also use a neural network for the task

(Adavanne et al., 2019).

In the present study, there was a separate model for

each landscape. An interesting question is whether there are

benefits if the effects of different environments are pooled

in a single model. In this case, the training data would con-

sist of samples representing multiple types of distance

effects in multiple types of environments. In practice, the

locations where ARUs are placed are known, so in principle,

it is easy to measure the impulse responses in those specific

places and train a specific model for each individual site.

However, even when keeping the effects of completely dif-

ferent environments separate, there could be benefits in

pooling the impulse responses among similar environments

so that there are more measurements available. In the pre-

sent work, the impulse responses were measured at several

distances but only along a single line. The more measure-

ments from the same environment, the better. Also, in the

present work, the measurements were done only at the

ground level, but it would be interesting to expand the loca-

tions of impulse sources into three-dimensional (3D) space

covering also different heights. How many measurements

are needed to cover the specific site depends on the charac-

teristics of the landscape. The results of the present study

indicated some robustness against different orientations of

the recording units compared to the direction of the sound

source. The six AudioMoths were located at different posi-

tions around the tree, and the training data were created by

applying the effect of only one microphone in front of the

tree. Also, the classification accuracies for winter data using

the summer landscape model were only slightly lower com-

pared to those of the winter model.

Bird recordings for which the synthetic effects are

applied may already contain the effects of their original

recording environments. To make the sounds as authentic as

possible, i.e., to make the sound as close as it would be in a

real environment, the original bird sound should be as clean

from the effect of its original environment as possible. The

best candidates would be good quality recordings obtained

with directional microphones. Most of the recordings that

were used in the present study were of good quality,

although the amount of background noise in them varied. In

close range recordings with a directional microphone, it

may be assumed that recordings have only a minimal effect

of environment. However, since none of the Macaulay

Library samples have been recorded in a free field, they are

not completely anechoic. As the results show, the method

seems to be quite robust to the variations of the original

training data quality, but we have not investigated the limits

of the method, i.e., how noisy an input sample could still be

useful. The ideal type of training data to which to apply the

impulse response based effects would be free of any original

environment effects.

One issue that was not covered in the present study was

the presence of multiple bird species vocalizing simulta-

neously. The proposed way that the distance effect is intro-

duced to any sound also enables mimicking of cases where

two or more birds are located at different distances. With a

single bird source, sound level normalization is not critical,

since typically, the input is normalized anyway before being

fed into a neural network. However, if many birds vocalize

at the same time, in addition to the way that different fre-

quencies are attenuated as a function of distance, also the

sound level can be set for each bird species. In practice, all

possible combinations are not possible to simulate in data

augmentation, but the more realistic the variation included

in the training data is, the better performing model will be

the outcome.

V. CONCLUSIONS

The present work has introduced a way of adding land-

scape and distance effect to the original sound. The pro-

posed method is especially suitable for PAM applications in

fixed sampling sites. Impulse responses measured in these
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sites can be applied to an unlimited amount of bird species

and vocalizations to create a comprehensive set of bird

sounds in the specific environment. Sweeps can be easily

recorded from multiple distances and directions, whereas

recording playbacks multiple times would be practically

impossible for any sufficiently large set of vocalizations.

Measuring a 19-s sweep allows a dense spatial sampling

grid to characterize the landscape.

An interesting topic to study in the future would be to

do the inverse, i.e., to remove the effect of the recording

environment in the sound. It would be straightforward if the

distance is known and the distance specific impulse response

is available. This would give a method to purify sounds by

applying deconvolution. In practice, there are many chal-

lenges, e.g., knowing the distance based on the sound alone

and handling the presence of multiple birds vocalizing

simultaneously. With several AudioMoths at decent distan-

ces from each other, the triangularization could be used to

locate the birds, separate different sound sources, and esti-

mate the recording distances.

Another interesting direction for future studies would

be to investigate how much variation there is in the impulse

responses, both within individual sites and between different

landscapes.
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